Transistor count continues to increase for silicon devices following Moore's Law. But the failure of Dennard scaling has brought the computing community to a crossroad where power has become the major limiting factor. Thus future chips can have many cores; but only a fraction of them can be switched on at any point in time. This dark silicon era, where significant fraction of the chip real estate remains dark, has necessitated a fundamental rethinking in architectural designs. In this context, heterogeneous multi-core architectures combining functionality and performance-wise divergent mix of processing cores (CPU, GPU, special-purpose accelerators, and reconfigurable computing) offer a promising option. Heterogeneous multi-cores can potentially provide energy-efficient computation as only the cores most suitable for the current computation need to be switched on. This article presents an overview of the state-of-the-art in heterogeneous multi-core landscape.
CITATION STYLE
Mitra, T. (2015). Heterogeneous multi-core architectures. IPSJ Transactions on System LSI Design Methodology, 8, 51–62. https://doi.org/10.2197/ipsjtsldm.8.51
Mendeley helps you to discover research relevant for your work.