We prove that if { z n } \{ {z_n}\} is uniformly separated and f β H p f \in {H^p} , then { f ( k ) ( z n ) ( 1 β | z n | 2 ) k + 1 / p } n = 1 β β l p forΒ k = 1 , 2 , β¦ \{ {f^{(k)}}({z_n}){(1 - {\left | {{z_n}} \right |^2})^{k + 1/p}}\} _{n = 1}^\infty \in {l^p}\;{\text {for }}k = 1,2, \ldots .
CITATION STYLE
Γyma, K., & Rookshin, S. (1982). Derivatives of π»^{π} functions. Proceedings of the American Mathematical Society, 84(1), 97β98. https://doi.org/10.1090/s0002-9939-1982-0633286-8
Mendeley helps you to discover research relevant for your work.