Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning

46Citations
Citations of this article
147Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fake news is a big problem in every society. Fake news must be detected and its sharing should be stopped before it causes further damage to the country. Spotting fake news is challenging because of its dynamics. In this research, we propose a framework for robust Thai fake news detection. The framework comprises three main modules, including information retrieval, natural language processing, and machine learning. This research has two phases: the data collection phase and the machine learning model building phase. In the data collection phase, we obtained data from Thai online news websites using web-crawler information retrieval, and we analyzed the data using natural language processing techniques to extract good features from web data. For comparison, we selected some well-known classification Machine Learning models, including Naïve Bayesian, Logistic Regression, K-Nearest Neighbor, Multilayer Perceptron, Support Vector Machine, Decision Tree, Random Forest, Rule-Based Classifier, and Long Short-Term Memory. The comparison study on the test set showed that Long Short-Term Memory was the best model, and we deployed an automatic online fake news detection web application.

Cite

CITATION STYLE

APA

Meesad, P. (2021). Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning. SN Computer Science, 2(6). https://doi.org/10.1007/s42979-021-00775-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free