Serial KinderMiner (SKiM) discovers and annotates biomedical knowledge using co-occurrence and transformer models

0Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The PubMed archive contains more than 34 million articles; consequently, it is becoming increasingly difficult for a biomedical researcher to keep up-to-date with different knowledge domains. Computationally efficient and interpretable tools are needed to help researchers find and understand associations between biomedical concepts. The goal of literature-based discovery (LBD) is to connect concepts in isolated literature domains that would normally go undiscovered. This usually takes the form of an A–B–C relationship, where A and C terms are linked through a B term intermediate. Here we describe Serial KinderMiner (SKiM), an LBD algorithm for finding statistically significant links between an A term and one or more C terms through some B term intermediate(s). The development of SKiM is motivated by the observation that there are only a few LBD tools that provide a functional web interface, and that the available tools are limited in one or more of the following ways: (1) they identify a relationship but not the type of relationship, (2) they do not allow the user to provide their own lists of B or C terms, hindering flexibility, (3) they do not allow for querying thousands of C terms (which is crucial if, for instance, the user wants to query connections between a disease and the thousands of available drugs), or (4) they are specific for a particular biomedical domain (such as cancer). We provide an open-source tool and web interface that improves on all of these issues. Results: We demonstrate SKiM’s ability to discover useful A–B–C linkages in three control experiments: classic LBD discoveries, drug repurposing, and finding associations related to cancer. Furthermore, we supplement SKiM with a knowledge graph built with transformer machine-learning models to aid in interpreting the relationships between terms found by SKiM. Finally, we provide a simple and intuitive open-source web interface (https://skim.morgridge.org) with comprehensive lists of drugs, diseases, phenotypes, and symptoms so that anyone can easily perform SKiM searches. Conclusions: SKiM is a simple algorithm that can perform LBD searches to discover relationships between arbitrary user-defined concepts. SKiM is generalized for any domain, can perform searches with many thousands of C term concepts, and moves beyond the simple identification of an existence of a relationship; many relationships are given relationship type labels from our knowledge graph.

Cite

CITATION STYLE

APA

Millikin, R. J., Raja, K., Steill, J., Lock, C., Tu, X., Ross, I., … Stewart, R. (2023). Serial KinderMiner (SKiM) discovers and annotates biomedical knowledge using co-occurrence and transformer models. BMC Bioinformatics, 24(1). https://doi.org/10.1186/s12859-023-05539-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free