Graphene Facilitates Biomethane Production from Protein-Derived Glycine in Anaerobic Digestion

60Citations
Citations of this article
102Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Interspecies electron transfer is a fundamental factor determining the efficiency of anaerobic digestion (AD), which involves syntrophy between fermentative bacteria and methanogens. Direct interspecies electron transfer (DIET) induced by conductive materials can optimize this process offering a significant improvement over indirect electron transfer. Herein, conductive graphene was applied in the AD of protein-derived glycine to establish DIET. The electron-producing reaction via DIET is thermodynamically more favorable and exhibits a more negative Gibbs free energy value (−60.0 kJ/mol) than indirect hydrogen transfer (−33.4 kJ/mol). The Gompertz model indicated that the kinetic parameters exhibited linear correlations with graphene addition from 0.25 to 1.0 g/L, leading to the highest increase in peak biomethane production rate of 28%. Sedimentibacter (7.8% in abundance) and archaea Methanobacterium (71.1%) and Methanosarcina (11.3%) might be responsible for DIET. This research can open up DIET to a range of protein-rich substrates, such as algae. Chemical Engineering; Environmental Chemical Engineering; Microbial Biotechnology; Nanomaterials

Cite

CITATION STYLE

APA

Lin, R., Deng, C., Cheng, J., Xia, A., Lens, P. N. L., Jackson, S. A., … Murphy, J. D. (2018). Graphene Facilitates Biomethane Production from Protein-Derived Glycine in Anaerobic Digestion. IScience, 10, 158–170. https://doi.org/10.1016/j.isci.2018.11.030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free