Heart Attack Prediction by using Machine Learning Techniques

  • et al.
Citations of this article
Mendeley users who have this article in their library.
Get full text


Heart disease is most common now a days and it is a very serious problem. Machine learning provides a best way for predicting heart disease. The aim of this paper is to develop simple, light weight approach for detecting heart disease by machine learning techniques. Machine learning can be implemented in heart disease prediction. In this paper different machine learning techniques have been used and it compares the result using various performance metrics. This study aims to perform comparative analysis of heart disease detection using publicly available dataset collected from UCI machine learning repository. There are various datasets available such as Switzerland dataset, Hungarian dataset and Cleveland dataset. Here Cleveland dataset is used which is having 303 records of patients along with 14 attributes are used for this study and testing. These datasets are preprocessed by removing all the noisy and missing data from the dataset. And then the preprocessed dataset are used for analysis. In this study six different machine learning techniques were used for comparison based on various performance metrics. The analysis shows that out of six techniques SVM gives the best result with 89.34%. A GUI is developed for the prediction of heart disease.




ware*, S., Rakesh, S. K., & Choudhary, B. (2020). Heart Attack Prediction by using Machine Learning Techniques. International Journal of Recent Technology and Engineering (IJRTE), 8(5), 1577–1580. https://doi.org/10.35940/ijrte.d9439.018520

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free