The main purpose of this study is to investigate the effects of dietary lysine deficiency on protein turnover of porcine muscles. There were 18 LYD three-breed-crossing postweanling barrows from six litters cannulated with gastric tubes through the esophagus at approximate 10 kg of body weight and allocated into three treatment groups. When their body weights reached over 12 kg, one group was sacrificed for determining the initial protein masses of m. masseter, m. longissimus dorsi, m. adductor and m. biceps femoris from the right body side. The others received a diet containing 100% or 61.4% (calculated values) of the lysine requirement (NRC, 1998) multiplied by 1.103 for a period of 17 days. Daily feed provision was computed for each pig according to body weight at the same day. All pigs were infused a flooding dose of [ 2H5]-phenylalanine to determine the fractional protein synthesis rates (FSR) of the aforementioned muscles in the end. Their four muscles from the right body side were also dissected for measuring the fractional rates of protein accretion (FAR). As for protein degradation, fractional rates (FDR) were calculated by differences between synthesis and accretion. Results showed that the lysine deficiency resulted in, significantly (p<0.05), lighter body weights, smaller muscles and a slower growth rate. The protein mass, accreted by the muscles, of the deficient group was only 54% averaged of the pigs fed adequately (p<0.05). The FAR of these muscles in the deficient group was significantly lower (p<0.05) and only achieved 61.1% averaged of the control; there was no significant difference (p>0.05), nevertheless, in the amino-acid composition of muscles between two groups. The lysine deficiency reduced significantly (p<0.05) the FSR of m. longissimus dorsi but did not influence its FDR. The m. biceps femoris also presented an inhibited FSR while its FDR reduced only exhibited a very high tendency (p = 0.055) compared to the adequately-fed pigs. As for the m. masseter and m. adductor, both of the FSR and FDR were depressed significantly (p<0.05) by the lysine deficiency, and changes in the FSR were severer than those in the FDR, so that their FAR were significantly slower (p<0.05) in comparison with the control group. The lysine deficiency also inhibited the RNA translation activity of the muscles while the effects on RNA capacity were not significant (p>0.05). In conclusion, the FAR of muscle protein was changed by the current lysine deficiency through the alterations in the FSR and/or FDR.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Chang, Y. M., & Wei, H. W. (2005). The effects of dietary lysine deficiency on muscle protein turnover in postweanling pigs. Asian-Australasian Journal of Animal Sciences, 18(9), 1326–1335. https://doi.org/10.5713/ajas.2005.1326