Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii

104Citations
Citations of this article
119Readers
Mendeley users who have this article in their library.

Abstract

Photobiological H2 production is an attractive option for renewable solar fuels. Sulfur-deprived cells of Chlamydomonas reinhardtii have been shown to produce hydrogen with the highest efficiency among photobiological systems. We have investigated the photosynthetic reactions during sulfur deprivation and H2 production in the wild-type and state transition mutant 6 (Stm6) mutant of Chlamydomonas reinhardtii. The incubation period (130 h) was dissected into different phases, and changes in the amount and functional status of photosystem II (PSII) were investigated in vivo by electron paramagnetic resonance spectroscopy and variable fluorescence measurements. In the wild type it was found that the amount of PSII is decreased to 25% of the original level; the electron transport from PSII was completely blocked during the anaerobic phase preceding H2 formation. This block was released during the H2 production phase, indicating that the hydrogenase withdraws electrons from the plastoquinone pool. This partly removes the block in PSII electron transport, thereby permitting electron flow from water oxidation to hydrogenase. In the Stm6 mutant, which has higher respiration and H2 evolution than the wild type, PSII was analogously but much less affected. The addition of the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1- dimethylurea revealed that ∼80% of the H2 production was inhibited in both strains. We conclude that (i) at least in the earlier stages, most of the electrons delivered to the hydrogenase originate from water oxidation by PSII, (ii) a faster onset of anaerobiosis preserves PSII from irreversible photoinhibition, and (iii) mutants with enhanced respiratory activity should be considered for better photobiological H2 production.

Cite

CITATION STYLE

APA

Volgusheva, A., Styring, S., & Mamedov, F. (2013). Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 110(18), 7223–7228. https://doi.org/10.1073/pnas.1220645110

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free