Improving fatigue performance of GFRP composite using Carbon Nanotubes

38Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

Abstract

Glass fiber reinforced polymers (GFRP) have become a preferable material for reinforcing or strengthening reinforced concrete structures due to their corrosion resistance, high strength to weight ratio, and relatively low cost compared with carbon fiber reinforced polymers (CFRP). However, the limited fatigue life of GFRP hinders their use in infrastructure applications. For instance, the low fatigue life of GFRP caused design codes to impose stringent stress limits on GFRP that rendered their use non-economic under significant cyclic loads in bridges. In this paper, we demonstrate that the fatigue life of GFRP can be significantly improved by an order of magnitude by incorporating Multi-Wall Carbon Nanotubes (MWCNTs) during GFRP fabrication. GFRP coupons were fabricated and tested under static tension and cyclic tension with mean fatigue stress equal to 40% of the GFRP tensile strength. Microstructural investigations using scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy were used for further investigation of the effect of MWCNTs on the GFRP composite. The experimental results show the 0.5 wt% and the 1.0 wt% MWCNTs were able to improve the fatigue life of GFRP by 1143% and 986%, respectively, compared with neat GFRP.

Cite

CITATION STYLE

APA

Genedy, M., Daghash, S., Soliman, E., & Reda Taha, M. M. (2015). Improving fatigue performance of GFRP composite using Carbon Nanotubes. Fibers, 3(1), 13–29. https://doi.org/10.3390/fib3010013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free