New Evidence of Tiger Subspecies Differentiation and Environmental Adaptation: Comparison of the Whole Genomes of the Amur Tiger and the South China Tiger

1Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Panthera tigris is a top predator that maintains the integrity of forest ecosystems and is an integral part of biodiversity. No more than 400 Amur tigers (P. t. altaica) are left in the wild, whereas the South China tiger (P. t. amoyensis) is thought to be extinct in the wild, and molecular biology has been widely used in conservation and management. In this study, the genetic information of Amur tigers and South China tigers was studied by whole-genome sequencing (WGS). A total of 647 Gb of high-quality clean data was obtained. There were 6.3 million high-quality single-nucleotide polymorphisms (SNPs), among which most (66.3%) were located in intergenic regions, with an average of 31.72% located in coding sequences. There were 1.73 million insertion-deletions (InDels), among which there were 2438 InDels (0.10%) in the coding region, and 270 thousand copy number variations (CNVs). Significant genetic differences were found between the Amur tiger and the South China tiger based on a principal component analysis and phylogenetic tree. The linkage disequilibrium analysis showed that the linkage disequilibrium attenuation distance of the South China tiger and the Amur tiger was almost the same, whereas the r2 of the South China tiger was 0.6, and the r2 of the Amur tiger was 0.4. We identified functional genes and regulatory pathways related to reproduction, disease, predation, and metabolism and characterized functional genes related to survival in the wild, such as smell, vision, muscle, and predatory ability. The data also provide new evidence for the adaptation of Amur tigers to cold environments. PRKG1 is involved in temperature regulation in a cold climate. FOXO1 and TPM4 regulate body temperature to keep it constant. Our results can provide genetic support for precise interspecies conservation and management planning in the future.

Cite

CITATION STYLE

APA

Du, H., Yu, J., Li, Q., & Zhang, M. (2022). New Evidence of Tiger Subspecies Differentiation and Environmental Adaptation: Comparison of the Whole Genomes of the Amur Tiger and the South China Tiger. Animals, 12(14). https://doi.org/10.3390/ani12141817

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free