Crosstalk Between Ethylene and Abscisic Acid During Changes in Soil Water Content Reveals a New Role for 1-Aminocyclopropane-1- Carboxylate in Coffee Anthesis Regulation

5Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Coffee (Coffea arabica L.) presents an asynchronous flowering regulated by an endogenous and environmental stimulus, and anthesis occurs once plants are rehydrated after a period of water deficit. We evaluated the evolution of Abscisic Acid (ABA), ethylene, 1-aminocyclopropane-1-carboxylate (ACC) content, ACC oxidase (ACO) activity, and expression analysis of the Lysine Histidine Transporter 1 (LHT1) transporter, in the roots, leaves, and flower buds from three coffee genotypes (C. arabica L. cv Oeiras, Acauã, and Semperflorens) cultivated under field conditions with two experiments. In a third field experiment, the effect of the exogenous supply of ACC in coffee anthesis was evaluated. We found an increased ACC level, low ACO activity, decreased level of ethylene, and a decreased level of ABA in all tissues from the three coffee genotypes in the re-watering period just before anthesis, and a high expression of the LHT1 in flower buds and leaves. The ethylene content and ACO activity decreased from rainy to dry period whereas the ABA content increased. A higher number of opened and G6 stage flower buds were observed in the treatment with exogenous ACC. The results showed that the interaction of ABA-ACO-ethylene and intercellular ACC transport among the leaves, buds, and roots in coffee favors an increased level of ACC that is most likely, involved as a modulator in coffee anthesis. This study provides evidence that ACC can play an important role independently of ethylene in the anthesis process in a perennial crop.

Cite

CITATION STYLE

APA

López, M. E., Silva Santos, I., Marquez Gutiérrez, R., Jaramillo Mesa, A., Cardon, C. H., Espíndola Lima, J. M., … Chalfun-Junior, A. (2022). Crosstalk Between Ethylene and Abscisic Acid During Changes in Soil Water Content Reveals a New Role for 1-Aminocyclopropane-1- Carboxylate in Coffee Anthesis Regulation. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.824948

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free