Differential Responses to Aging Among the Transcriptome and Proteome of Mesenchymal Progenitor Populations

0Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The biological aging of stem cells (exhaustion) is proposed to contribute to the development of a variety of age-related conditions. Despite this, little is understood about the specific mechanisms which drive this process. In this study, we assess the transcriptomic and proteomic changes in 3 different populations of mesenchymal progenitor cells from older (50-70 years) and younger (20-40 years) individuals to uncover potential mechanisms driving stem cell exhaustion in mesenchymal tissues. To do this, we harvested primary bone marrow mesenchymal stem and progenitor cells (MPCs), circulating osteoprogenitors (COP), and adipose-derived stem cells (ADSCs) from younger and older donors, with an equal number of samples from men and women. These samples underwent RNA sequencing and label-free proteomic analysis, comparing the younger samples to the older ones. There was a distinct transcriptomic phenotype in the analysis of pooled older stem cells, suggestive of suppressed proliferation and differentiation; however, these changes were not reflected in the proteome of the cells. Analyzed independently, older MPCs had a distinct phenotype in both the transcriptome and proteome consistent with altered differentiation and proliferation with a proinflammatory immune shift in older adults. COP cells showed a transcriptomic shift to proinflammatory signaling but no consistent proteomic phenotype. Similarly, ADSCs displayed transcriptomic shifts in physiologies associated with cell migration, adherence, and immune activation but no proteomic change with age. These results show that there are underlying transcriptomic changes with stem cell aging that may contribute to a decline in tissue regeneration. However, the proteome of the cells was inconsistently regulated.

References Powered by Scopus

The Perseus computational platform for comprehensive analysis of (prote)omics data

5450Citations
N/AReaders
Get full text

Geroscience: Linking aging to chronic disease

1795Citations
N/AReaders
Get full text

Satellite cells and the muscle stem cell niche

1554Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Feehan, J., Tripodi, N., Kondrikov, D., Wijeratne, T., Gimble, J., Hill, W., … Duque, G. (2024). Differential Responses to Aging Among the Transcriptome and Proteome of Mesenchymal Progenitor Populations. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 79(9). https://doi.org/10.1093/gerona/glae147

Readers' Seniority

Tooltip

Professor / Associate Prof. 1

50%

PhD / Post grad / Masters / Doc 1

50%

Readers' Discipline

Tooltip

Medicine and Dentistry 3

75%

Computer Science 1

25%

Save time finding and organizing research with Mendeley

Sign up for free