Purpose: Microsatellite instability (MSI) and high tumor mutation burden (TMB-High) are promising pan-tumor biomarkers used to select patients for treatment with immune checkpoint blockade; however, real-time sequencing of unresectable or metastatic solid tumors is often challenging. We report a noninvasive approach for detection of MSI and TMB-High in the circulation of patients. Experimental Design: We developed an approach that utilized a hybrid-capture–based 98-kb pan-cancer gene panel, including targeted microsatellite regions. A multifactorial error correction method and a novel peak-finding algorithm were established to identify rare MSI frameshift alleles in cell-free DNA (cfDNA). Results: Through analysis of cfDNA derived from a combination of healthy donors and patients with metastatic cancer, the error correction and peak-finding approaches produced a specificity of >99% (n ¼ 163) and sensitivities of 78% (n ¼ 23) and 67% (n ¼ 15), respectively, for MSI and TMB-High. For patients treated with PD-1 blockade, we demonstrated that MSI and TMB-High in pretreatment plasma predicted progression-free survival (hazard ratios: 0.21 and 0.23, P ¼ 0.001 and 0.003, respectively). In addition, we analyzed cfDNA from longitudinally collected plasma samples obtained during therapy to identify patients who achieved durable response to PD-1 blockade. Conclusions: These analyses demonstrate the feasibility of noninvasive pan-cancer screening and monitoring of patients who exhibit MSI or TMB-High and have a high likelihood of responding to immune checkpoint blockade.
CITATION STYLE
Georgiadis, A., Durham, J. N., Keefer, L. A., Bartlett, B. R., Zielonka, M., Murphy, D., … Sausen, M. (2019). Noninvasive detection of microsatellite instabilit and high tumor mutation burden in cancer patients treated with PD-1 blockade. Clinical Cancer Research, 25(23), 7024–7034. https://doi.org/10.1158/1078-0432.CCR-19-1372
Mendeley helps you to discover research relevant for your work.