The interaction of hydrogen with solids and the mechanisms of hydride formation experience significant changes in nanomaterials due to a number of structural features. This review aims at illustrating the design principles that have recently inspired the development of new nanomaterials for hydrogen storage. After a general discussion about the influence of nanomaterials' microstructure on their hydrogen sorption properties, several scientific cases and hot topics are illustrated surveying various classes of materials. These include bulk-like nanomaterials processed by mechanochemical routes, thin films and multilayers, nano-objects with composite architectures such as core-shell or composite nanoparticles, and nanoparticles on porous or graphene-like supports. Finally, selected examples of recent in situ studies of metal-hydride transformation mechanisms using microscopy and spectroscopy techniques are highlighted.
CITATION STYLE
Pasquini, L. (2020). Design of nanomaterials for hydrogen storage. Energies, 13(13). https://doi.org/10.3390/en13133503
Mendeley helps you to discover research relevant for your work.