Cultivating minority scientists: Undergraduate research increases self-efficacy and career ambitions for underrepresented students in STEM

219Citations
Citations of this article
656Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study, Social Cognitive Career Theory (SCCT) is used to explore changes in the career intentions of students in an undergraduate research experience (URE) program at a large public minority-serving college. Our URE model addresses the challenges of establishing an undergraduate research program within an urban, commuter, underfunded, Minority-Serving Institution (MSI). However, our model reaches beyond a focus on retention and remediation toward scholarly contributions and shifted career aspirations. From a student's first days at the College to beyond their graduation, we have encouraged them to explore their own potential as scientists in a coordinated, sequential, and self-reflective process. As a result, while the program's graduates have traditionally pursued entry-level STEM jobs, graduates participating in mentored research are increasingly focused on professional and academic STEM career tracks involving post-graduate study. In addition to providing an increasingly expected experience and building students’ skills, participation in undergraduate research is seen to have a transformative effect on career ambitions for many students at MSIs. While undergraduate research is often thought of in context of majority-serving institutions, we propose that it serves as a powerful equalizer at MSIs. Building on the institutional characteristics that drive diversity, our students produce scholarly work and pursue graduate degrees, in order to address the long-standing under-representation of minorities in the sciences. © 2016 Wiley Periodicals, Inc. J Res Sci Teach 54: 169–194, 2017.

Cite

CITATION STYLE

APA

Carpi, A., Ronan, D. M., Falconer, H. M., & Lents, N. H. (2017). Cultivating minority scientists: Undergraduate research increases self-efficacy and career ambitions for underrepresented students in STEM. Journal of Research in Science Teaching, 54(2), 169–194. https://doi.org/10.1002/tea.21341

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free