We evaluated whether prior training would improve collateral blood flow (BF) to the calf muscles after acute-onset occlusion of the femoral artery. Exercise training was performed in the absence of any vascular occlusion. Adult male Sprague-Dawley rats (~325 g) were kept sedentary (n = 14), limited to cage activity, or exercise trained (n = 14) for 6 wk by treadmill running. Early in the day of measurement, animals were surgically prepared for BF determination, and the femoral arteries were occluded bilaterally. Four to five hours later, collateral BF was determined twice during treadmill running with the use of 141Ce and 85Sr microspheres: first, at a demanding speed and, second, after a brief rest and at a higher speed. The absence of any further increase in BF at the higher speed indicated that maximal collateral BF was measured. Prior training increased calf muscle BF by ~70% compared with sedentary animals; however, absolute BF remained below values previously observed in animals with a well-developed collateral vascular tree. Thus prior training appeared to optimize the use of the existing collateral circuit. This implies that altered vasoresponsiveness induced in normal nonoccluded vessels with exercise training serves to improve collateral BF to the periphery.
CITATION STYLE
Yang, H. T., Laughlin, M. H., & Terjung, R. L. (2000). Prior exercise training increases collateral-dependent blood flow in rats after acute femoral artery occlusion. American Journal of Physiology - Heart and Circulatory Physiology, 279(4 48-4). https://doi.org/10.1152/ajpheart.2000.279.4.h1890
Mendeley helps you to discover research relevant for your work.