Structure-activity relationships of anti-HIV-1 peptides with disulfide linkage between D- and L-cysteine at positions i and i+3, respectively, derived from HIV-1 gp41 C-peptide

9Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The constrained α-helical structure of a C-peptide is useful for enhancing anti-HIV-1 activity. The i and i+3 positions in an α-helical structure are located close together, therefore D-Cys (dC) and L-Cys (C) were introduced at the positions, respectively, to make a dC-C disulfide bond in 28mer C-peptides. Accordingly, this study tested whether a dC-C disulfide bond would increase the α-helicity and anti-HIV-1 activity of peptides. A C-peptide can be divided into three domains, the N-terminal hydrophobic domain (HPD), middle interface domain (IFD), and C-terminal hydrogen domain (HGD), based on the binding property with an N-peptide. In general, the dC-C modifications in HPD enhanced the anti-HIV-1 activity, while those in IFD and HGD resulted in no or much less activity. The modified peptides with no activity clearly showed much less α-helicity than the native peptides, while those with higher activity showed an almost similar or slightly increased α-helicity. Therefore, the present results suggest that the introduction of a dC-C bridge in the N-terminal hydrophobic domain of a C-peptide may be useful for enhancing the anti-HIV-1 activity.

Cite

CITATION STYLE

APA

Myung, K. L., Hee, K. K., Tae, Y. L., Hahm, K. S., & Kil, L. K. (2006). Structure-activity relationships of anti-HIV-1 peptides with disulfide linkage between D- and L-cysteine at positions i and i+3, respectively, derived from HIV-1 gp41 C-peptide. Experimental and Molecular Medicine, 38(1), 18–26. https://doi.org/10.1038/emm.2006.3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free