Inferring microRNA-mRNA causal regulatory relationships from expression data

68Citations
Citations of this article
110Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Motivation: microRNAs (miRNAs) are known to play an essential role in the post-transcriptional gene regulation in plants and animals. Currently, several computational approaches have been developed with a shared aim to elucidate miRNA-mRNA regulatory relationships. Although these existing computational methods discover the statistical relationships, such as correlations and associations between miRNAs and mRNAs at data level, such statistical relationships are not necessarily the real causal regulatory relationships that would ultimately provide useful insights into the causes of gene regulations. The standard method for determining causal relationships is randomized controlled perturbation experiments. In practice, however, such experiments are expensive and time consuming. Our motivation for this study is to discover the miRNA-mRNA causal regulatory relationships from observational data. Results: We present a causality discovery-based method to uncover the causal regulatory relationship between miRNAs and mRNAs, using expression profiles of miRNAs and mRNAs without taking into consideration the previous target information. We apply this method to the epithelial-to-mesenchymal transition (EMT) datasets and validate the computational discoveries by a controlled biological experiment for the miR-200 family. A significant portion of the regulatory relationships discovered in data is consistent with those identified by experiments. In addition, the top genes that are causally regulated by miRNAs are highly relevant to the biological conditions of the datasets. The results indicate that the causal discovery method effectively discovers miRNA regulatory relationships in data. Although computational predictions may not completely replace intervention experiments, the accurate and reliable discoveries in data are cost effective for the design of miRNA experiments and the understanding of miRNA-mRNA regulatory relationships. © The Author 2013.

Cite

CITATION STYLE

APA

Le, T. D., Liu, L., Tsykin, A., Goodall, G. J., Liu, B., Sun, B. Y., & Li, J. (2013). Inferring microRNA-mRNA causal regulatory relationships from expression data. Bioinformatics, 29(6), 765–771. https://doi.org/10.1093/bioinformatics/btt048

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free