Genetically modified crops pass benefits to weeds

  • Qiu J
N/ACitations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In their study, published this month in New Phytologist1, Lu and his colleagues genetically modified the cultivated rice species to overexpress its own EPSP synthase and cross-bred the modified rice with a weedy relative ==== A genetic-modification technique used widely to make crops herbicide resistant has been shown to confer advantages on a weedy form of rice, even in the absence of the herbicide. The finding suggests that the effects of such modification have the potential to extend beyond farms and into the wild. Several types of crops have been genetically modified to be resistant to glyphosate, an herbicide first marketed under the trade name Roundup. This glyphosate resistance enables farmers to wipe out most weeds from the fields without damaging their crops. Glyphosate inhibits plant growth by blocking an enzyme known as EPSP synthase, which is involved in the production of certain amino acids and other molecules that account for as much as 35% of a plant’s mass. The genetic-modification technique — used, for instance, in the Roundup Ready crops made by the biotechnology giant Monsanto, based in St Louis, Missouri — typically involves inserting genes into a crop’s genome to boost EPSP-synthase production. The genes are usually derived from bacteria that infect plants. The extra EPSP synthase lets the plant withstand the effects of glyphosate. Biotechnology labs have also attempted to use genes from plants rather than bacteria to boost EPSP-synthase production, in part to exploit a loophole in US law that facilitates regulatory approval of organisms carrying transgenes not derived from bacterial pests. Few studies have tested whether transgenes such as those that confer glyphosate resistance can — once they get into weedy or wild relatives through cross-pollination — make those plants more competitive in survival and reproduction. “The traditional expectation is that any sort of transgene will confer disadvantage in the wild in the absence of selection pressure, because the extra machinery would reduce the fitness,” says Norman Ellstrand, a plant geneticist at the University of California in Riverside. But now a study led by Lu Baorong, an ecologist at Fudan University in Shanghai, challenges that view: it shows that a weedy form of the common rice crop, Oryza sativa, gets a significant fitness boost from glyphosate resistance, even when glyphosate is not applied.

Cite

CITATION STYLE

APA

Qiu, J. (2013). Genetically modified crops pass benefits to weeds. Nature. https://doi.org/10.1038/nature.2013.13517

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free