Inbreeding mating systems are uncommon because of inbreeding depression. Mating among close relatives can evolve, however, when outcrossing is constrained. Social spiders show obligatory mating among siblings. In combination with a female-biased sex ratio, sib-mating results in small effective populations. In such a system, high genetic homozygosity is expected, and drift may cause population divergence. We tested the effect of outcrossing in the social spider Stegodyphus dumicola. Females were mated to sib-males, to a non-nestmate within the population, or to a male from a distant population, and fitness traits of F1s were compared. We found reduced hatching success of broods from between-population crosses, suggesting the presence of population divergence at a large geographical scale that may result in population incompatibility. However, a lack of a difference in offspring performance between inbred and outbred crosses indicates little genetic variation between populations, and could suggest recent colonization by a common ancestor. This is consistent with population dynamics of frequent colonizations by single sib-mated females of common origin, and extinctions of populations after few generations. Although drift or single mutations can lead to population divergence at a relatively short time scale, it is possible that dynamic population processes homogenize these effects at longer time scales.
CITATION STYLE
Berger-Tal, R., Tuni, C., Lubin, Y., Smith, D., & Bilde, T. (2014). Fitness consequences of outcrossing in a social spider with an inbreeding mating system. Evolution, 68(2), 343–351. https://doi.org/10.1111/evo.12264
Mendeley helps you to discover research relevant for your work.