In the context of quantum field theory (QFT), unstable particles are associated with complex-valued poles of two-body scattering matrices in the unphysical sheet of rapidity space. The Breit-Wigner formula relates this pole to the mass and life-time of the particle, observed in scattering events. In this paper, we uncover new, dynamical signatures of unstable excitations and show that they have a strong effect on the non-equilibrium properties of QFT. Focusing on a 1+1D integrable model, and using the theory of Generalized Hydrodynamics, we study the formation and decay of unstable particles by analysing the release of hot matter into a low-temperature environment. We observe the formation of tails and the decay of the emitted nonlinear waves, in sharp contrast to the situation without unstable excitations. We also uncover a new phenomenon by which a wave of a stable population of unstable particles may persist without decay for long times. We expect these signatures of the presence of unstable particles to have a large degree of universality. Our study shows that the out-of-equilibrium dynamics of many-body systems can be strongly affected not only by the spectrum, but also by excitations with finite life-times.
CITATION STYLE
Castro-Alvaredo, O. A., De Fazio, C., Doyon, B., & Ziółkowska, A. A. (2022). Tails of instability and decay: A hydrodynamic perspective. SciPost Physics, 12(3). https://doi.org/10.21468/SCIPOSTPHYS.12.3.115
Mendeley helps you to discover research relevant for your work.