7,8-Dihydroxycoumarin Alleviates Synaptic Loss by Activated PI3K-Akt-CREB-BDNF Signaling in Alzheimer's Disease Model Mice

23Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is clinically characterized by the impairment of memory and cognition. Accumulation of β-amyloid (Aβ) in the brain is considered as a key process in the development of AD because it impairs the synapses' function to impair memory formation. Recent research studies have indicated that a group of edible plant-derived Thymelaeaceae compounds known as coumarin may exert particularly powerful actions on alleviating learning and memory impairment. 7,8-Dithydroxycoumarin (7,8-DHC), a bioactive component of coumarin derived from Thymelaeaceae, showed its function in neuroprotection before. In this study, we found that 7,8-DHC was able to mitigate Aβ accumulation via reducing the level of BACE1 and increasing the level of ADAM17 and ADAM10. More importantly, we found that 7,8-DHC could mitigate memory impairment, promote the dendrite branch density, and increase synaptic protein expression via activating PI3K-Akt-CREB-BDNF signaling. Hence, these results suggested that 7,8-DHC represented a novel bioactive therapeutic agent in mitigating Aβ deposition and synaptic loss in the process of treating AD.

Cite

CITATION STYLE

APA

Yan, L., Jin, Y., Pan, J., He, X., Zhong, S., Zhang, R., … Chen, J. (2022). 7,8-Dihydroxycoumarin Alleviates Synaptic Loss by Activated PI3K-Akt-CREB-BDNF Signaling in Alzheimer’s Disease Model Mice. Journal of Agricultural and Food Chemistry, 70(23), 7130–7138. https://doi.org/10.1021/acs.jafc.2c02140

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free