Phosphorus (P) has only one stable isotope and therefore tracking P dynamics in ecosystems and inferring sources of P loading to water bodies have been difficult. Researchers have recently employed the natural abundance of the ratio of 18O/16O of phosphate to elucidate P dynamics. In addition, phosphate highly enriched in oxygen-18 also has potential to be an effective tool for tracking specific sources of P in the environment, but has so far been used sparingly, possibly due to unavailability of oxygen-18 labeled phosphate (OLP) and uncertainty in synthesis and detection. One objective of this research was to develop a simple procedure to synthesize highly enriched OLP. Synthesized OLP is made up of a collection of species that contain between zero and four oxygen-18 atoms and, as a result, the second objective of this research was to develop a method to detect and quantify each OLP species. OLP was synthesized by reacting either PCl5 or POCl3 with water enriched with 97 atom % oxygen-18 in ambient atmosphere under a fume hood. Unlike previous reports, we observed no loss of oxygen-18 enrichment during synthesis. Electrospray ionization mass spectrometertry (ESI-MS) was used to detect and quantify each species present in OLP. OLP synthesized from POCl3 contained 1.2% P18O16O3, 18.2% P18O216O2, 67.7% P18O316O, and 12.9% P18O4, and OLP synthesized from PCl5 contained 0.7% P16O4, 9.3% P18O316O, and 90.0% P18O4. We found that OLP can be synthesized using a simple procedure in ambient atmosphere without the loss of oxygen-18 enrichment and ESI-MS is an effective tool to detect and quantify OLP that sheds light on the dynamics of synthesis in ways that standard detection methods cannot. © 2011 Melby et al.
CITATION STYLE
Melby, E. S., Soldat, D. J., & Barak, P. (2011). Synthesis and detection of oxygen-18 labeled phosphate. PLoS ONE, 6(4). https://doi.org/10.1371/journal.pone.0018420
Mendeley helps you to discover research relevant for your work.