Discriminant Laplacian Embedding

8Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Many real life applications brought by modern technologies often have multiple data sources, which are usually characterized by both attributes and pairwise similarities at the same time. For example in webpage ranking, a webpage is usually represented by a vector of term values, and meanwhile the internet linkages induce pairwise similarities among the webpages. Although both attributes and pairwise similarities are useful for class membership inference, many traditional embedding algorithms only deal with one type of input data. In order to make use of the both types of data simultaneously, in this work, we propose a novel Discriminant Laplacian Embedding (DLE) approach. Supervision information from training data are integrated into DLE to improve the discriminativity of the resulted embedding space. By solving the ambiguity problem in computing the scatter matrices caused by data points with multiple labels, we successfully extend the proposed DLE to multi-label classification. In addition, through incorporating the label correlations, the classification performance using multi-label DLE is further enhanced. Promising experimental results in extensive empirical evaluations have demonstrated the effectiveness of our approaches.

Cite

CITATION STYLE

APA

Wang, H., Huang, H., & Ding, C. (2010). Discriminant Laplacian Embedding. In Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI 2010 (pp. 618–623). AAAI Press. https://doi.org/10.1609/aaai.v24i1.7662

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free