Inflammation plays a significant role in the development of obesity-related complications, but the molecular events that initiate and propagate such inflammation remain unclear. Here, we report that mice fed a high-fat diet (HFD) for as little as 1-3 days show increased differentiation of myeloid progenitors into neutrophils and monocytes but reduced B lymphocyte production in the bone marrow. Levels of neutrophil elastase (NE) and the nuclear factors CCAAT/enhancer-binding protein α (C/EBPα) and growth factor-independent 1 (GFI-1) are elevated in hematopoietic stem and progenitor cells from HFD-fed mice, but mice lacking either NE or C/EBPα are resistant to HFD-induced myelopoiesis. NE deletion increases expression of the inhibitory isoform of p30 C/EBPα, impairs the transcriptional activity of p42 C/EBPα, and reduces expression of the C/EBPα target gene GFI-1 in hematopoietic stem and progenitor cells, suggesting a mechanism by which NE regulates myelopoiesis. Furthermore, NE deletion prevents HFD-induced vascular leakage. Thus, HFD feeding rapidly activates bone marrow myelopoiesis through the NE-dependent C/EBPα-GFI-1 pathway preceding vascular damage and systemic inflammation.
CITATION STYLE
Huang, J. Y., Zhou, Q. L., Huang, C. H., Song, Y., Sharma, A. G., Liao, Z., … Jiang, Z. Y. (2017). Neutrophil elastase regulates emergency myelopoiesis preceding systemic inflammation in diet-induced obesity. Journal of Biological Chemistry, 292(12), 4770–4776. https://doi.org/10.1074/jbc.C116.758748
Mendeley helps you to discover research relevant for your work.