Ghrelin ameliorates hypoxia-induced pulmonary hypertension via phospho-GSK3β/β-catenin signaling in neonatal rats

27Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Effective treatment and/or prevention strategies for neonatal persistent pulmonary hypertension of the newborn (PPHN) have been an important topic in neonatal medicine. However, mechanisms of impaired pulmonary vascular structure in hypoxia-induced PPHN are poorly understood and consequently limit the development of effective treatment. In this study, we aimed to explore the molecular signaling cascades in the lungs of a PPHN animal model and used primary cultured rat pulmonary microvascular endothelial cells to analyze the physiological benefits of ghrelin during the pathogenesis of PPHN. Randomly selected newborn rats were exposed to hypoxia (10-12%) or room air and received daily s.c. injections of ghrelin (150 μg/kg) or saline. After 2 weeks, pulmonary hemodynamics and morphometry were assessed in the rats. Compared with the control, hypoxia increased pulmonary arterial pressure, right ventricle (RV) hypertrophy, and arteriolar wall thickness. Ghrelin treatment reduced both the magnitude of PH and the RV/(left ventricle+septum (Sep)) weight ratio. Ghrelin protected neonatal rats from hypoxia-induced PH via the upregulation of phosphorylation of glycogen synthase kinase 3b (p-GSK3β)/βcatenin signaling and associated with β-catenin translocation to the nucleus in the presence of growth hormone secretagogue receptor-1a. Our findings suggest that s.c. administration of ghrelin improved PH and attenuated pulmonary vascular remodeling after PPHN. These beneficial effects may be mediated by the regulation of p-GSK3β/β-catenin expression. We propose ghrelin as a novel potential therapeutic agent for PPHN. © 2011 Society for Endocrinology.

Cite

CITATION STYLE

APA

Xu, Y. P., Zhu, J. J., Cheng, F., Jiang, K. W., Gu, W. Z., Shen, Z., … Du, L. Z. (2011). Ghrelin ameliorates hypoxia-induced pulmonary hypertension via phospho-GSK3β/β-catenin signaling in neonatal rats. Journal of Molecular Endocrinology, 47(1), 33–43. https://doi.org/10.1530/JME-10-0143

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free