Applications of Terrestrial Laser Scanning in Geomorphology

  • HAYAKAWA Y
  • OGUCHI T
N/ACitations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

High-resolution landform data have become widely available in parallel with the technical revolution in topographic measurements, particularly those related to laser scanning technology. Aerial laser scanning (ALS) has become popular for taking basic topographic measurements and has been frequently applied to geoscientific studies in recent decades. Terrestrial laser scanning (TLS) is applied to geosciences less frequently and is mostly limited to Europe and North America, although in countries such as Japan it may permit detection of rapid topographic changes under a humid, tectonically active environment. The purpose of this review article is to summarize the current situation of TLS applications in geomorphology and related sciences, and to illuminate the future directions of such applications. First, the principles of TLS methodology, including the basics of taking field measurements and post-processing TLS data are briefly explained. Then, some case studies on the use of TLS in geomorphology are reviewed. The examples relate to collapses of sea cliffs, landslides and debris flows, sedimentation of fluvial deposits, soil erosion, and tectonic activity of faults. Then, some issues related to the acquisition, processing, and analysis of TLS-derived point cloud data and digital elevation models (DEMs) with a higher resolution than traditional methods are pointed out. Accuracy and resolution issues are particularly crucial, because selecting appropriate scales for a target material is often directly related to the results of analyses, and appropriate scales should be taken into consideration before acquiring TLS data in the field. This means that a higher resolution is not always better in relation to the scales of target landforms and measurement accuracy. Time-series assessment, which is the most typical and fundamental analysis using such high-resolution data, also strictly depends on measurement accuracy. Robust analyses of TLS-derived high-resolution point clouds and DEMs are also examined. Various analytical methodologies not only for the morphology of Earth surfaces such as roughness, but also other elements including the intensities and waveforms of laser returns need to be developed. To expand the use of TLS in geomorphology and geosciences, systems for sharing well-formatted high-resolution datasets, data processing tools, and instruments should also be established.

Cite

CITATION STYLE

APA

HAYAKAWA, Y. S., & OGUCHI, T. (2016). Applications of Terrestrial Laser Scanning in Geomorphology. Journal of Geography (Chigaku Zasshi), 125(3), 299–324. https://doi.org/10.5026/jgeography.125.299

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free