Geospatial vaccine uptake is a critical factor in designing strategies that maximize the population-level impact of a vaccination program. This study uses an innovative spatiotemporal model to assess the impact of vaccination distribution strategies based on disease geospatial attributes and population-level risk assessment. For proof of concept, we adapted a spatially explicit COVID-19 model to investigate a hypothetical geospatial targeting of COVID-19 vaccine rollout in Ohio, United States, at the early phase of COVID-19 pandemic. The population-level deterministic compartmental model, incorporating spatial-geographic components at the county level, was formulated using a set of differential equations stratifying the population according to vaccination status and disease epidemiological characteristics. Three different hypothetical scenarios focusing on geographical sub-population targeting (areas with high versus low infection intensity) were investigated. Our results suggest that a vaccine program that distributes vaccines equally across the entire state effectively averts infections and hospitalizations (2954 and 165 cases, respectively). However, in a context with equitable vaccine allocation, the number of COVID-19 cases in high infection intensity areas will remain high; the cumulative number of cases remained >30,000 cases. A vaccine program that initially targets high infection intensity areas has the most significant impact in reducing new COVID-19 cases and infection-related hospitalizations (3756 and 213 infections, respectively). Our approach demonstrates the importance of factoring geospatial attributes to the design and implementation of vaccination programs in a context with limited resources during the early stage of the vaccine rollout.
CITATION STYLE
Awad, S. F., Musuka, G., Mukandavire, Z., Froass, D., Mackinnon, N. J., & Cuadros, D. F. (2021). Implementation of a vaccination program based on epidemic geospatial attributes: Covid-19 pandemic in ohio as a case study and proof of concept. Vaccines, 9(11). https://doi.org/10.3390/vaccines9111242
Mendeley helps you to discover research relevant for your work.