RN1, a novel galectin-3 inhibitor, inhibits pancreatic cancer cell growth in vitro and in vivo via blocking galectin-3 associated signaling pathways

62Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

Abstract

Galectin-3 (Gal-3) has been implicated in pancreatic ductal adenocarcinoma (PDAC), and its candidacy as a therapeutic target has been evaluated. Gal-3 is widely upregulated in tumors, and its expression is associated with the development and malignancy of PDAC. In the present study, we demonstrate that a polysaccharide, RN1, purified from the flower of Panax notoginseng binds to Gal-3 and suppresses its expression. In addition, RN1 markedly inhibits PDAC cells growth in vitro, in vivo and in patient-derived xenografts. Mechanistically, RN1 binds to epidermal growth factor receptor (EGFR) and Gal-3, thereby disrupting the interaction between Gal-3 and EGFR and downregulating extracellular-related kinase (ERK) phosphorylation and the transcription factor of Gal-3, Runx1 expression. Inhibiting the expression of Runx1 by RN1, suppresses Gal-3 expression and inactivates Gal-3-associated signaling pathways, including the EGFR/ERK/Runx1, BMP/smad/Id-3 and integrin/FAK/JNK signaling pathways. In addition, RN1 can also bind to bone morphogenetic protein receptors (BMPR1A and BMPR2) and block the interaction between Gal-3 and the BMPRs. Thus, our results suggest that a novel Gal-3 inhibitor RN1 may be a potential candidate for human PDAC treatment via multiple targets and multiple signaling pathways.

Cite

CITATION STYLE

APA

Zhang, L., Wang, P., Qin, Y., Cong, Q., Shao, C., Du, Z., … Ding, K. (2017). RN1, a novel galectin-3 inhibitor, inhibits pancreatic cancer cell growth in vitro and in vivo via blocking galectin-3 associated signaling pathways. Oncogene, 36(9), 1297–1308. https://doi.org/10.1038/onc.2016.306

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free