Numerical and CFD-Based Modelling of Concentrated Domestic Slurry in Turbulent Flow Through Circular Pipes

0Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The concentration of domestic slurry has two advantages, it promotes resource recovery (nutrients and biomass) and saves water. But the design of a relevant sewerage requires a clear understanding of the frictional losses incurred during the transport of the slurry. This abstracts describes numerical & CFD-based methods to estimate losses while the concentrated slurry flows through circular pipes in a fully-turbulent flow. To model turbulent flows through circular pipes, one can rely on either the Newtonian Moody Charts appropriate for engineering applications or a computational fluid dynamics (CFD)-based analysis, made possible through the Newtonian universal law of the wall. However, our studies reveal that concentrated domestic slurry behaves like a non-Newtonian fluid, of the Herschel-Bulkley type. Therefore, the analysis of such a slurry would require modifications to both, existing engineering models and CFD methods. This abstract summarises a modified law of the wall suitable for Herschel-Bulkley fluids, which has been validated against experiments on concentrated domestic slurry. It further details possible non-Newtonian numerical engineering models that could be modified to assess frictional losses incurred by Herschel-Bulkley fluids. The latter will be a quicker and perhaps reliable alternative to computationally expensive CFD-analyses.

Cite

CITATION STYLE

APA

Mehta, D., Radhakrishnan, A. K. T., van Lier, J., & Clemens, F. (2019). Numerical and CFD-Based Modelling of Concentrated Domestic Slurry in Turbulent Flow Through Circular Pipes. In Green Energy and Technology (pp. 528–532). Springer Verlag. https://doi.org/10.1007/978-3-319-99867-1_91

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free