Faraday rotation response to coronal mass ejection structure

21Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present the results from modeling the coronal mass ejection (CME) properties that have an effect on the Faraday rotation (FR) signatures that may be measured with an imaging radio antenna array such as the Murchison Widefield Array (MWA). These include the magnetic flux rope orientation, handedness, magnetic-field magnitude, velocity, radius, expansion rate, electron density, and the presence of a shock/sheath region. We find that simultaneous multiple radio source observations (FR imaging) can be used to uniquely determine the orientation of the magnetic field in a CME, increase the advance warning time on the geoeffectiveness of a CME by an order of magnitude from the warning time possible from in-situ observations at L1, and investigate the extent and structure of the shock/sheath region at the leading edge of fast CMEs. The magnetic field of the heliosphere is largely "invisible" with only a fraction of the interplanetary magnetic-field lines convecting past the Earth; remote sensing the heliospheric magnetic field through FR imaging from the MWA will advance solar physics investigations into CME evolution and dynamics. © 2010 The Author(s).

Cite

CITATION STYLE

APA

Jensen, E. A., Hick, P. P., Bisi, M. M., Jackson, B. V., Clover, J., & Mulligan, T. (2010). Faraday rotation response to coronal mass ejection structure. Solar Physics, 265(1), 31–48. https://doi.org/10.1007/s11207-010-9543-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free