Comparing decision bound and exemplar models of categorization

312Citations
Citations of this article
165Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The performance of a decision bound model of categorization (Ashby, J992a; Ashby & Maddox, in press) is compared with the performance of two exemplar models. The first is the generalized context model (e.g., Nosofsky, 1986, 1992) and the second is a recently proposed deterministic exemplar model (Ashby & Maddox, in press), which contains the generalized context model as a special case. When the exemplars from each category were normally distributed and the optimal decision bound was linear, the deterministic exemplar model and the decision bound model provided roughly equivalent accounts of the data. When the optimal decision bound was nonlinear, the decision bound model provided a more accurate account of the data than did either exemplar model. When applied to categorization data collected by Nosofsky (1986, 1989), in which the category exemplars are not normally distributed, the decision bound model provided excellent accounts of the data, in many cases significantly outperforming the exemplar models. The decision bound model was found to be especially successful when(1) single subject analyses were performed, (2) each subject was given relatively extensive training, and (3) the subject's performance was characterized by complex suboptimalities. These results support the hypothesis that the decision bound is of fundamental importance in predicting asymptotic categorization performance and that the decision bound models provide a viable alternative to the currently popular exemplar models of categorization. © 1993 Psychonomic Society, Inc.

Cite

CITATION STYLE

APA

Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound and exemplar models of categorization. Perception & Psychophysics, 53(1), 49–70. https://doi.org/10.3758/BF03211715

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free