The activation of AKT (also called protein kinase B) is thought to be a critical step in the phosphoinositide 3-kinase pathway that regulates cell growth and differentiation. In this report, we investigated the role of AKT in the regulation of mouse early embryo development. Injection of mRNA coding for a constitutively active myristoylated AKT (myr-Akt1) into one-cell stage fertilized eggs induced cell division more effectively than injection of wild-type AKT (Akt1-WT) mRNA, whereas microinjection of mRNA of kinase-deficient AKT (Akt1-KD) delayed the first mitotic division. Meanwhile, microinjection of different kinds of mRNA of AKT affected the phosphorylation status of CDC2A-Tyr15 and the activation of M-phase promoting factor (MPF). To investigate the intermediate factor between AKT and MPF, we then injected one-cell stage eggs first with Akt1-WT mRNA or myr-Akt1 mRNA and then with mRNA encoding either wild-type CDC25B (Cdc25b-WT) or a AKT-nonphosphorylatable Ser351 to Ala CDC25B mutant (Cdc25b-S351A). Cdc25b-S351A strongly inhibited the effect of AKT. Therefore, AKT causes the activation of MPF and strongly promotes the development of one-cell stage mouse fertilized eggs by inducing AKT-dependent phosphorylation of CDC25B, a member of the CDC25 phosphatase family. Our finding that CDC25B acts as a potential target of AKT provides new insight into the effect of AKT in the regulation of early development of mouse embryos. © 2007 by the Society for the Study of Reproduction, Inc.
CITATION STYLE
Feng, C., Yu, A., Liu, Y., Zhang, J., Zong, Z., Su, W., … Yu, B. (2007). Involvement of protein kinase B/AKT in early development of mouse fertilized eggs. Biology of Reproduction, 77(3), 560–568. https://doi.org/10.1095/biolreprod.107.060269
Mendeley helps you to discover research relevant for your work.