Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks

39Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Generating accurate 3D models from cone-beam computed tomography (CBCT) images is an important step in developing treatment plans for patients with craniomaxillofacial (CMF) deformities. This process often involves bone segmentation and landmark digitization. Since anatomical landmarks generally lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly correlated. However, most existing methods simply treat them as two standalone tasks, without considering their inherent association. In addition, these methods usually ignore the spatial context information (i.e., displacements from voxels to landmarks) in CBCT images. To this end, we propose a context-guided fully convolutional network (FCN) for joint bone segmentation and landmark digitization. Specifically, we first train an FCN to learn the displacement maps to capture the spatial context information in CBCT images. Using the learned displacement maps as guidance information, we further develop a multi-task FCN to jointly perform bone segmentation and landmark digitization. Our method has been evaluated on 107 subjects from two centers, and the experimental results show that our method is superior to the state-of-the-art methods in both bone segmentation and landmark digitization.

Cite

CITATION STYLE

APA

Zhang, J., Liu, M., Wang, L., Chen, S., Yuan, P., Li, J., … Shen, D. (2017). Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10434 LNCS, pp. 720–728). Springer Verlag. https://doi.org/10.1007/978-3-319-66185-8_81

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free