The POI recommendation system has become an important means to help people discover attractive and interesting places. Based on our data analysis, we observe that users pay equal attention to conservatism and curiosity. In particular, adopting analysis corresponding to different time intervals, we find that users lean towards old POIs in the short term and look for new POIs with the increase of the time interval. However, existing approaches usually neglect users' conservatism and curiosity preferences. Therefore, they are confronted with a bottleneck of depicting accurate user needs, making it difficult to improve the recommendation performance further. Besides, we further find that the number of user daily check-ins has uneven distribution, which is not conducive to capture the accurate transition patterns of user behaviors. In light of the above, we design a single POI sequential method. On this basis, we propose a recommendation method of the variable additive Markov chain. We consider the user sequential preferences, especially liking old and pursuing new features. In addition, our model exploits the geographical tendency of user behaviors. Finally, we conduct abundant experiments on four cities in the two real datasets, i.e., Foursquare and Jiepang. The experimental results show its superiority over other competitors.
CITATION STYLE
Li, R. (2021). Joint Modeling of User Behaviors Based on Variable-Order Additive Markov Chain for POI Recommendation. Wireless Communications and Mobile Computing, 2021. https://doi.org/10.1155/2021/4359369
Mendeley helps you to discover research relevant for your work.