Using Bisimulation for Policy Transfer in MDPs

8Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Knowledge transfer has been suggested as a useful approach for solving large Markov Decision Processes. The main idea is to compute a decision-making policy in one environment and use it in a different environment, provided the two are”close enough”. In this paper, we use bisimulation-style metrics (Ferns et al., 2004) to guide knowledge transfer. We propose algorithms that decide what actions to transfer from the policy computed on a small MDP task to a large task, given the bisimulation distance between states in the two tasks. We demonstrate the inherent”pessimism” of bisimulation metrics and present variants of this metric aimed to overcome this pessimism, leading to improved action transfer. We also show that using this approach for transferring temporally extended actions (Sutton et al., 1999) is more successful than using it exclusively with primitive actions. We present theoretical guarantees on the quality of the transferred policy, as well as promising empirical results.

Cite

CITATION STYLE

APA

Castro, P. S., & Precup, D. (2010). Using Bisimulation for Policy Transfer in MDPs. In Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI 2010 (pp. 1065–1070). AAAI Press. https://doi.org/10.1609/aaai.v24i1.7751

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free