Vibration analysis for fault detection of wind turbine drivetrains—a comprehensive investigation

52Citations
Citations of this article
101Readers
Mendeley users who have this article in their library.

Abstract

Vibration analysis is an effective tool for the condition monitoring and fault diagnosis of wind turbine drivetrains. It enables the defect location of mechanical subassemblies and health indicator construction for remaining useful life prediction, which is beneficial to reducing the operation and maintenance costs of wind farms. This paper analyzes the structure features of different drivetrains of mainstream wind turbines and introduces a vibration data acquisition system. Almost all the research on the vibration-based diagnosis algorithm for wind turbines in the past decade is reviewed, with its effects being discussed. Several challenging tasks and their solutions in the vibration-based fault detection of wind turbine drivetrains are proposed from the perspective of practicality for wind turbines, including the fault detection of planetary subassemblies in multistage wind turbine gearboxes, fault feature extraction under nonstationary conditions, fault information enhancement techniques and health indicator construction. Numerous naturally damaged cases representing the real operational features of industrial wind turbines are given, with a discussion of the failure mechanism of defective parts in wind turbine drivetrains as well.

Cite

CITATION STYLE

APA

Teng, W., Ding, X., Tang, S., Xu, J., Shi, B., & Liu, Y. (2021, March 2). Vibration analysis for fault detection of wind turbine drivetrains—a comprehensive investigation. Sensors. MDPI AG. https://doi.org/10.3390/s21051686

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free