Private forests have a crucial role in maintaining the functioning of the Indonesian forest ecosystem especially because of the continuous degradation of natural forests. Private forests are a part of social forestry which becomes a tool for the Indonesian government to reduce carbon dioxide (CO2) emission by 26% by 2030. The United Nations Programme on Reducing Emissions from Deforestation and Forest Degradation has encouraged the Indonesian government to establish a forest monitoring system by estimating forest carbon stock using a combination of forest inventory and remote sensing. This study is aimed at assessing the potential of vegetation indices derived from Sentinel-2 for estimating aboveground biomass (AGB) of private forests. We used 45 sample plots and 7 vegetation indices to evaluate the ability of Sentinel-2 in estimating AGB on private forests. Normalised difference index (NDI) 45 exhibited a strong correlation with AGB compared to other indices (r = 0.89; R2 = 0.79). Stepwise linear regression fitted for establishing the model between field AGB and vegetation indices (R2 = 0.81). We also found that AGB in the study area based on spatial analysis was 72.54 Mg/ha. A root mean square error (RMSE) value from predicted and observed AGB was 27 Mg/ha. The AGB value in the study area is higher than the AGB value from some of forest types, and it indicates that private forests are good for biomass storage. Overall, vegetation indices from Sentinel-2 multispectral imagery can provide a good result in terms of reporting the AGB on private forests.
CITATION STYLE
Askar, Nuthammachot, N., Phairuang, W., Wicaksono, P., & Sayektiningsih, T. (2018). Estimating aboveground biomass on private forest using sentinel-2 imagery. Journal of Sensors, 2018. https://doi.org/10.1155/2018/6745629
Mendeley helps you to discover research relevant for your work.