A series of novel PtII-linked double helices were prepared by inter- or intrastrand ligand-exchange reactions of the complementary duplexes composed of chiral or achiral amidine dimer and achiral carboxylic acid dimer strands joined by trans-PtII-acetylide complexes with PPh3 ligands using chiral and achiral chelating diphosphines. The structure and stability of the PtII-linked double helices were highly dependent on the diphosphine structures. An interstrand ligand exchange took place with chiral and achiral 1,3-diphosphine-based ligands, resulting in trans-PtII-bridged double helices, whose helical structures were quite stable even in dimethyl sulfoxide (DMSO) due to the interstrand cross-link, whereas a 1,2-diphosphine-based ligand produced non-cross-linked cis-PtII-linked duplexes, resulting from an intrastrand ligand-exchange that readily dissociated into single strands in DMSO. When enantiopure 1,3-diphosphine-based ligands were used, the resulting trans-PtII-bridged double helices adopted a preferred-handed helical sense biased by the chirality of the bridged diphosphines. Interestingly, the interstrand ligand exchange with racemic 1,3-diphosphine toward an optically-active PtII-linked duplex, composed of chiral amidine and achiral carboxylic acid strands, was found to proceed in a diastereoselective manner, thus forming complete homochiral trans-PtII-bridged double helices via a unique chiral self-sorting. This journal is
CITATION STYLE
Horie, M., Ousaka, N., Taura, D., & Yashima, E. (2015). Chiral tether-mediated stabilization and helix-sense control of complementary metallo-double helices. Chemical Science, 6(1), 714–723. https://doi.org/10.1039/c4sc02275k
Mendeley helps you to discover research relevant for your work.