Aim: A discrimination analysis has been explored for the probabilistic classification of healthy versus ovarian cancer serum samples using proteomics data from mass spectrometry (MS). Methods: The method employs data normalization, clustering, and a linear discriminant analysis on surface-enhanced laser desorption ionization (SELDI) time-of-flight MS data. The probabilistic classification method computes the optimal linear discriminant using the complex human blood serum SELDI spectra. Cross-validation and training/testing data-split experiments are conducted to verify the optimal discriminant and demonstrate the accuracy and robustness of the method. Results: The cluster discrimination method achieves excellent performance. The sensitivity, specificity, and positive predictive values are above 97% on ovarian cancer. The protein fraction peaks, which significantly contribute to the classification, can be available from the analysis process. Conclusion: The discrimination analysis helps the molecular identities of differentially expressed proteins and peptides between the healthy and ovarian patients. © 2008 CPS and SIMM.
CITATION STYLE
Hong, Y. J., Wang, X. D., Shen, D., & Zeng, S. (2008). Discrimination analysis of mass spectrometry proteomics for ovarian cancer detection. Acta Pharmacologica Sinica, 29(10), 1240–1246. https://doi.org/10.1111/j.1745-7254.2008.00861.x
Mendeley helps you to discover research relevant for your work.