Structural insight into host plasma membrane association and assembly of HIV-1 matrix protein

9Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Oligomerization of Pr55Gag is a critical step of the late stage of the HIV life cycle. It has been known that the binding of IP6, an abundant endogenous cyclitol molecule at the MA domain, has been linked to the oligomerization of Pr55Gag. However, the exact binding site of IP6 on MA remains unknown and the structural details of this interaction are missing. Here, we present three high-resolution crystal structures of the MA domain in complex with IP6 molecules to reveal its binding mode. Additionally, extensive Differential Scanning Fluorimetry analysis combined with cryo- and ambient-temperature X-ray crystallography and GNM-based transfer entropy calculations identify the key residues that participate in IP6 binding. Our data provide novel insights about the multilayered HIV-1 virion assembly process that involves the interplay of IP6 with PIP2, a phosphoinositide essential for the binding of Pr55Gag to membrane. IP6 and PIP2 have neighboring alternate binding sites within the same highly basic region (residues 18–33). This indicates that IP6 and PIP2 bindings are not mutually exclusive and may play a key role in coordinating virion particles’ membrane localization. Based on our three different IP6-MA complex crystal structures, we propose a new model that involves IP6 coordination of the oligomerization of outer MA and inner CA domain’s 2D layers during assembly and budding.

Cite

CITATION STYLE

APA

Ciftci, H., Tateishi, H., Koiwai, K., Koga, R., Anraku, K., Monde, K., … DeMirci, H. (2021). Structural insight into host plasma membrane association and assembly of HIV-1 matrix protein. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-95236-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free