Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol

103Citations
Citations of this article
182Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The abilities of enzymes to catalyze reactions in nonnatural environments of organic solvents have opened new opportunities for enzyme-based industrial processes. However, the main drawback of such processes is that most enzymes have a limited stability in polar organic solvents. In this study, we employed protein engineering methods to generate a lipase for enhanced stability in methanol, which is important for biodiesel production. Two protein engineering approaches, random mutagenesis (error-prone PCR) and structure-guided consensus, were applied in parallel on an unexplored lipase gene from Geobacillus stearothermophilus T6. A high-throughput colorimetric screening assay was used to evaluate lipase activity after an incubation period in high methanol concentrations. Both protein engineering approaches were successful in producing variants with elevated half-life values in 70% methanol. The best variant of the random mutagenesis library, Q185L, exhibited 23-fold-improved stability, yet its methanolysis activity was decreased by one-half compared to the wild type. The best variant from the consensus library, H86Y/A269T, exhibited 66-fold-improved stability in methanol along with elevated thermostability (+4.3°C) and a 2-fold-higher fatty acid methyl ester yield from soybean oil. Based on in silico modeling, we suggest that the Q185L substitution facilitates a closed lid conformation that limits access for both the methanol and substrate excess into the active site. The enhanced stability of H86Y/A269T was a result of formation of new hydrogen bonds. These improved characteristics make this variant a potential biocatalyst for biodiesel production. © 2014, American Society for Microbiology.

Cite

CITATION STYLE

APA

Dror, A., Shemesh, E., Dayan, N., & Fishman, A. (2014). Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Applied and Environmental Microbiology, 80(4), 1515–1527. https://doi.org/10.1128/AEM.03371-13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free