Advanced Techniques for Geospatial Referencing in Online Media Repositories

1Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

In the digital transformation era, video media libraries’ untapped potential is immense, restricted primarily by their non-machine-readable nature and basic search functionalities limited to standard metadata. This study presents a novel multimodal methodology that utilizes advances in artificial intelligence, including neural networks, computer vision, and natural language processing, to extract and geocode geospatial references from videos. Leveraging the geospatial information from videos enables semantic searches, enhances search relevance, and allows for targeted advertising, particularly on mobile platforms. The methodology involves a comprehensive process, including data acquisition from ARD Mediathek, image and text analysis using advanced machine learning models, and audio and subtitle processing with state-of-the-art linguistic models. Despite challenges like model interpretability and the complexity of geospatial data extraction, this study’s findings indicate significant potential for advancing the precision of spatial data analysis within video content, promising to enrich media libraries with more navigable, contextually rich content. This advancement has implications for user engagement, targeted services, and broader urban planning and cultural heritage applications.

Cite

CITATION STYLE

APA

Warch, D., Stellbauer, P., & Neis, P. (2024). Advanced Techniques for Geospatial Referencing in Online Media Repositories. Future Internet, 16(3). https://doi.org/10.3390/fi16030087

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free