Aim: The aim was to investigate cheese samples for the prevalence of Staphylococcus aureus, evaluate multiplex polymerase chain reaction (PCR) methods for S. aureus identification, as well as to determine the antibacterial activity of silver nanoparticles against such strains. Materials and Methods: Total of 100 random locally manufactured cheese samples were collected from Qena dairy markets, Egypt, and examined conventionally for the prevalence of S. aureus then, confirmation of these isolates were done using multiplex PCR. The antibacterial activity of silver nanoparticles against such isolates was also checked. Results: Lower prevalence of S. aureus in Damietta cheese (54%) than in Kareish cheese (62%) was recorded. As well lower frequency distribution for both S. aureus (36%) and CNS (8%) was also reported for Damietta cheese. Using of multiplex PCR method for S. aureus identification have been confirmed all 58 S. aureus stains that were identified conventionally by detection of two PCR products on agarose gel: The 791 bp and the 638 bp. The correlation coefficient between conventional and multiplex PCR method was 0.91 and was significant at p≤0.001. Regarding antibacterial activity of silver nanoparticles using disk diffusion method on Baird Parker agar it was found that inhibition zone of silver nanoparticles against S. aureus, was 19.2±0.91 mm and it was higher than that produced by gentamicin (400 units/ml) 15.2±0.89 mm. Conclusions: The present study illustrated the higher prevalence of S. aureus in cheese samples that may constitute a public health hazard to consumers. According to the results, it can be concluded that silver nanoparticles can be used as an effective antibacterial against S. aureus. Thereby, there is a need for an appropriate study for using silver nanoparticles in cleaning and disinfection of equipment and in food packaging.
CITATION STYLE
Abdel Hameed, K. G., & El-Zamkan, M. A. (2015). Prevalence, molecular characterization of Staphylococcus aureus isolated from cheese and in vitro antibacterial activity of silver nanoparticles against such strains. Veterinary World, 8(7), 908–912. https://doi.org/10.14202/vetworld.2015.908-912
Mendeley helps you to discover research relevant for your work.