Deep learning unmasks the ECG signature of Brugada syndrome

2Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

One in 10 cases of sudden cardiac death strikes without warning as the result of an inherited arrhythmic cardiomyopathy, such as Brugada Syndrome (BrS). Normal physiological variations often obscure visible signs of this and related life-threatening channelopathies in conventional electrocardiograms (ECGs). Sodium channel blockers can reveal previously hidden diagnostic ECG features, however, their use carries the risk of life-threatening proarrhythmic side effects. The absence of a nonintrusive test places a grossly underestimated fraction of the population at risk of SCD. Here, we present a machine-learning algorithm that extracts, aligns, and classifies ECG waveforms for the presence of BrS. This protocol, which succeeds without the use of a sodium channel blocker (88.4% accuracy, 0.934 AUC in validation), can aid clinicians in identifying the presence of this potentially life-threatening heart disease.

Cite

CITATION STYLE

APA

Melo, L., Ciconte, G., Christy, A., Vicedomini, G., Anastasia, L., Pappone, C., & Grant, E. (2023). Deep learning unmasks the ECG signature of Brugada syndrome. PNAS Nexus, 2(11). https://doi.org/10.1093/pnasnexus/pgad327

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free