Personal thermal management textile/wearable is an effective strategy to expand the indoor temperature setpoint range to reduce a building's energy consumption. Usually, textiles/wearables that were engineered for controlling conduction, convection, radiation, or sweat evaporation have been developed separately. Here, we demonstrate a multimodal adaptive wearable with moisture-responsive flaps composed of a nylon/metal heterostructure, which can simultaneously regulate convection, sweat evaporation, and mid-infrared emission to accomplish large and rapid heat transfer tuning in response to human perspiration vapor. We show that the metal layer not only plays a crucial role in low-emissivity radiative heating but also enhances the bimorph actuation performance. The multimodal adaptive mechanism expands the thermal comfort zone by 30.7 and 20.7% more than traditional static textiles and single-modal adaptive wearables without any electricity and energy input, making it a promising design paradigm for personal heat management.
CITATION STYLE
Li, X., Ma, B., Dai, J., Sui, C., Pande, D., Smith, D. R., … Hsu, P. C. (2021). Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Science Advances, 7(51). https://doi.org/10.1126/sciadv.abj7906
Mendeley helps you to discover research relevant for your work.