Bioassay-guided fractionation of marine-derived fungi revealed that the EtOAc fraction from the fermentation broth of a mutated fungal strain Streptomyces nitrosporeus YBH10-5 had lipid-lowering effects in HepG2 cells. Chromatographic separation of the EtOAc fraction resulted in the isolation of 11 PKS-based derivatives, including a structurally unique meroterpenoid namely nitrosporeunol H (1). The structure of compound 1 was determined by the analysis of spectroscopic data. Further bioassay resulted in farnesylquinone (2) and its analogues to exert in vivo fat-reducing effects in C. elegans worm model. The underlying mode of action of compound 2 in the context of live worms was investigated, uncovering that compound 2 enhanced the mitochondrial β.-oxidation rate and changed the transcriptional level of energy metabolism genes. Additional experiments revealed that compound 2 exerted its effects in C. elegans partially through repressing FAT-5, an isoform of stearoyl-CoA desaturase (SCD) which catalyzes the conversion of saturated fatty acids to monounsaturated fatty acids, thereafter leading to the modification of the fatty acid profile. Thus, compound 2 was suggested to be a promising lead for further optimization to treat obesity.
CITATION STYLE
Jia, X., Xu, M., Yang, A., Zhao, Y., Liu, D., Huang, J., … Lin, W. (2019). Reducing e-ect of farnesylquinone on lipid mass in c. elegans by modulating lipid metabolism. Marine Drugs, 17(6). https://doi.org/10.3390/md17060336
Mendeley helps you to discover research relevant for your work.