Synthesis of 3-substituted isoxazolidin-4-ols using hydroboration–oxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles

7Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Isoxazolidines represent a very important class of N/O-containing heterocycles used as the key intermediates in the synthesis of more complex cyclic and acyclic compounds, including various biologically active molecules. Here, we present a fast and highly stereoselective approach towards both C-3/4-cis and C-3/4-trans isomers of 3-substituted isoxazolidin-4-ols. The strategy relies on a highly regio- and trans-stereoselective hydroboration–oxidation reaction of the 4,5-unsubstituted 2,3-dihydroisoxazoles with basic hydrogen peroxide. The consecutive oxidation/reduction route, sequentially employing Dess–Martin periodinane and L-selectride, is used for the inversion of the C-3/4-trans relative configuration of the isoxazolidine ring. The significance of the method lies in its variability and applicability to a concise synthesis of various 4-hydroxyisoxazolidines, starting from the readily available C-alkyl/aryl-nitrones. The resemblance to 3-hydroxypyrrolidines certainly makes the 4-hydroxyisoxazolidines important and valuable structural fragments in drug discovery.

Cite

CITATION STYLE

APA

Dikošová, L., Laceková, J., Záborský, O., & Fischer, R. (2020). Synthesis of 3-substituted isoxazolidin-4-ols using hydroboration–oxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles. Beilstein Journal of Organic Chemistry, 16, 1313–1319. https://doi.org/10.3762/bjoc.16.112

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free