Humor recognition using deep learning

95Citations
Citations of this article
111Readers
Mendeley users who have this article in their library.

Abstract

Humor is an essential but most fascinating element in personal communication. How to build computational models to discover the structures of humor, recognize humor and even generate humor remains a challenge and there have been yet few attempts on it. In this paper, we construct and collect four datasets with distinct joke types in both English and Chinese and conduct learning experiments on humor recognition. We implement a Convolutional Neural Network (CNN) with extensive filter size, number and Highway Networks to increase the depth of networks. Results show that our model outperforms in recognition of different types of humor with benchmarks collected in both English and Chinese languages on accuracy, precision, and recall in comparison to previous works.

Cite

CITATION STYLE

APA

Chen, P. Y., & Soo, V. W. (2018). Humor recognition using deep learning. In NAACL HLT 2018 - 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference (Vol. 2, pp. 113–117). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/n18-2018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free