We studied the roles of morphogenetic principles - heterogeneity of components, dynamic differentiation/redifferentiation of components, and local information sharing among components - in the self-organization of morphogenetic collective systems. By incrementally introducing these principles to collectives, we defined four distinct classes of morphogenetic collective systems. Monte Carlo simulations were conducted using an extended version of the Swarm Chemistry model that was equipped with dynamic differentiation/re-differentiation and local information sharing capabilities. Self-organization of swarms was characterized by several kinetic and topological measurements, the latter of which were facilitated by a newly developed network-based method. Results of simulations revealed that, while heterogeneity of components had a strong impact on the structure and behavior of the swarms, dynamic differentiation/re-differentiation of components and local information sharing helped the swarms maintain spatially adjacent, coherent organization.
CITATION STYLE
Sayama, H. (2014). Four classes of morphogenetic collective systems. In Artificial Life 14 - Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems, ALIFE 2014 (pp. 320–327). MIT Press Journals. https://doi.org/10.7551/978-0-262-32621-6-ch052
Mendeley helps you to discover research relevant for your work.